White Paper Report

Report 1D: 104105

Application Number: HD5147511

Project Director: Robert Turknett (turknett@tacc.utexas.edu)
Institution: University of Texas, Austin

Reporting Period: 9/1/2011-8/31/2012

Report Due: 11/30/2012

Date Submitted: 4/9/2013

White Paper Report

Grant Number: HD-51475-11

Project Title: A Thousand Words: Advanced Visualization for the Humanities
Project Director: Rob Turknett

Grantee Institution: Texas Advanced Computing Center (TACC)

Date: November 30, 2012

Definitions

Tiled display/ scalable display/ gigapixcel display/ display cluster/ visnalization wall. A large-scale display made

from many desktop monitors, HDTV’s, or video projectors, usually driven by multiple computers
networked, or “clustered,” together. The tiling of multiple displays creates a total display resolution orders of
magnitude larger than a single monitor, enabling the viewing of vast amounts of information at once by

multiple viewers.

Processing: A computer programming language for creating interactive visualizations, originally designed at
MIT’s Media Lab as a pedagogical tool to teach programming concepts to media artists. Processing is now
used by tens of thousands of new media and visual design professionals and is steadily gaining popularity in

the field of information visualization.

Library/ Software library/ API: A pre-built collection of programming code tailored to a specific purpose. A
library can dramatically reduce the amount of time it takes to develop software for a specific purpose,
because most of the work is abstracted and automated. The custom part of your code communicates with
the software library through the application programming interface (API). The advantage of building a
software library versus a software application is that it encourages innovation -- other software developers

around the world can take the library and build new things with it.

Project Overview

Visualization uses computers to find patterns and make connections that normally cannot be seen. The
Thousand Words project is an initiative to develop software tools to allow humanities researchers to use
visualization - specifically on high-resolution displays powered by supercomputers — to perform novel

research.

The tools that are currently available for visualization on high-resolution displays are primarily targeted at
scientists, and because of that, the tools can be complicated and ill suited to the needs of humanities scholats.
To address this issue, we chose a programming language called Processing as a platform on which to build

visualizations and visualization tools in collaboration with humanities scholars.

Processing makes it easy to create simple interactive "sketches" that combine text, video, 3D graphics,
animation, sound, and more. However, like most software, Processing was previously incapable of running
on ultra-high-resolution display clusters. The results of this start up project enable researchers anywhere to use

Processing in conjunction with tiled displays at universities, museums and research centers.

Our long-term goal with this project is to create the world's most advanced platform for humanities
visualization. We aim to create software tools that will enable a new class of scholars from the humanities to
use high-resolution displays and advanced computing to create visualizations, interactive maps, and

multimedia works at a scale and resolution never before possible.

Project Activities

Technical investigations and prototyping

From September 1, 2011 to March 31, 2012, the project team for the Thousand Words project focused
primarily on the development of a prototype Processing module to enable interactive visualizations on
high-resolution display walls.

We achieved one of our main goals for the project: enabling Processing sketches to be viewed on tiled
displays. Our technical lead, Brandt Westing, is on the development team for a related Texas Advanced
Computing Center (TACC) project called DisplayCluster, a new software environment for interactively
driving large-scale tiled displays. By leveraging DisplayCluster’s pixel streaming capabilities, we were able to
view multiple interactive Processing sketches on our 307 megapixel display wall, Stallion. Processing sketches
can be viewed by streaming the portion of the user’s desktop that contains the Processing sketch.

DisplayCluster is open source and has been made freely available to the public.'

A Processing sketch, ProseVis, streamed to the tiled display system

While streaming desktops via DisplayCluster satisfies our goal of enabling Processing sketches to be viewed
on tiled displays, the streaming resolution is limited to around 2560x1600 pixels (4 megapixels). This method
cannot support the native resolution of large displays, which can reach up to 38000x8000 pixels (328
megapixels). Achieving larger resolutions for interactive visualizations requires the solution as outlined in the
project proposal. In this scheme, a Processing module distributes rendering to each node in the tiled display,
as shown in the diagram below:

! http:/ /www.tacc.utexas.edu/tacc-projects/displavcluster

http://www.google.com/url?q=http%3A%2F%2Fwww.tacc.utexas.edu%2Ftacc-projects%2Fdisplaycluster&sa=D&sntz=1&usg=AFQjCNGLWhXfTkJnGqHmOmT1sgTrQJpzjg
http://www.google.com/url?q=http%3A%2F%2Fwww.tacc.utexas.edu%2Ftacc-projects%2Fdisplaycluster&sa=D&sntz=1&usg=AFQjCNGLWhXfTkJnGqHmOmT1sgTrQJpzjg
http://www.google.com/url?q=http%3A%2F%2Fwww.tacc.utexas.edu%2Ftacc-projects%2Fdisplaycluster&sa=D&sntz=1&usg=AFQjCNGLWhXfTkJnGqHmOmT1sgTrQJpzjg

Display 0 Display 1 Display n

>) 000
Java DC Java DC Java DC Proc.
Process2 | Process 1 Proc. n+1 n
® |\ F - P
SN NGV} - o
N / -
/!

Head Display

(=1
- -

A proposed architecture for a distributed rendering Processing module

Each node runs a Java process that receives messages from the Processing module and sends display
instructions to the DisplayCluster process running on that node. In other words, the interactive visualization is
broken down into sections so that each node in the tiled display computes only the portion of the image that

it needs to show.

Initially, we planned to use an existing application programming interface called VRJuggler to implement this
design. However, technical investigations and experiments revealed that VRJuggler is a dead end. The library
is not be easily adaptable to the Java framework in which Processing is based. This was a bit of a setback,

since we counted on leveraging VRJuggler to speed development time.

In light of this setback, we focused development on an in-house solution to distributed graphics contexts
required by parallel Processing sketches. While researching this idea, we discovered an existing open-source
framework called Most Pixels Ever (MPE). MPE is a library for distributed Processing, and appeared from
our investigations to be a usable solution to interactive Processing across the tiled display. Rather than
re-invent the wheel, we resolved to adapt this library to our needs, and continue the development of the

library to make it more general and easily configured for end users.

While MPE provides a good foundation for us to build upon, the design of the framework significantly

alters the ease-of-use of Processing, which limits the advantages that Processing has over other graphics
frameworks such as OpenGL, VTK, and OpenFrameworks. By using MPE, it is necessary to change the
source code of the original sketch significantly to work on a large-scale display system. This presents an
obstacle to non-technical users. Our work in extending MPE therefore focused on minimizing these intrusive
elements and code modification, and simplifying the creation and maintenance of the configuration files
needed to desctibe the display surface used by the software. Ultimately, due to the large amount of changes
required, we decided to develop our own library inspired by MPE called Massive Pixel Environment
(originally named Most Pixels Ever: Cluster Edition)?, rewritten from the ground up.

* We recently decided to change the name of our library from Most Pixels Ever: Cluster Edition to Massive Pixel

Development of Massive Pixel Environment

frame event

MPE Library ~ Pr9cessing
5 = 0
setup() done event
frustum{}
| Render Node
[framebock(}
= O
done event |

Render Node
Head Node

{J
= U
done event

Render Node

The finalized architecture for Massive Pixel Environment

From March 31, 2012 to September 1, 2012, the project team focused on the development of Massive Pixel
Environment. This rewrite of Most Pixels Ever greatly simplifies the process of preparing a Processing
sketch for the tiled display, compared with the original version. The toolkit requires only 3-5 lines of code be
added to a developet’s visualization, and is therefore relatively easy for a developer to extend the visualization

from a laptop or workstation to a wall-sized display.

Testing and feedback from collaborators

Throughout the project, the development team for Massive Pixel Environment (referred to henceforth as
MPE) worked closely with several collaborators who were interested in using MPE in their research. These
initial users were instrumental in gathering requirements and in providing feedback on early versions of the
software. These collaborators include Dr. Jason Baldridge (Department of Linguistics, UT Austin), Tom
Benton (College of Education, UT Austin), Dr. Tanya Clement (School of Information, UT Austin), Dr.
Matt Cohen (Department of English, UT Austin), Dr. Yusheng Feng (SiVert Center, UT San Antonio), and
Dr. Craig Tweedie (Cybershare Center, UT El Paso).

Several collaborators developed Processing-based visualizations in parallel with MPE development, so that
when MPE was ready to test, their visualizations could be moved from their laptops to the high-resolution
tiled displays in the TACC/ACES Visualization Lab.

Project funding was not used for the development of these visualizations. Instead, we provided technical

assistance and early access to the MPE software to our collaborators in exchange for their feedback. Funding

Environment, in order to avoid confusion with Shiffman’s original library. We decided to preserve the acronym for
continuity. We are currently in the process of changing the name in the codebase, on the web, and in videos.

for the work on these visualizations came from a variety of sources, including Mellon, the National Science

Foundation (NSF) and UT Austin.

Dr. Jason Baldridge interacting with a visualization of Civil War archives in his office and at the TACC/ACES
Vislab

Dr. Jason Baldridge at the University of Texas at Austin Department of Linguistics and graduate research
assistant Mike Speriosu developed a large-scale interactive map showing places mentioned in a large archive
of Civil War documents. Clicking on a marker shows the name of the document, the page number, and an
excerpt of the place mentioned. The high-resolution display allows much more of the data to be visible at

once, giving researchers a new and more comprehensive geospatial view of the archive.

Dr. Tanya Clement, using ProseVis in her office and at the TACC/ACES Vislab

Dr. Tanya Clement at the University of Texas at Austin School of Information and undergraduate research
assistant Christopher Wiley worked with the Thousand Wotds team to develop a new version of the
ProseVis language visualization tool, suited for use with high-resolution displays. This version enables the

display of many more documents and many more passages for cross comparison.

We also had several early users who tested MPE at other visualization labs within the UT system. Dr. Craig
Tweedie at the University of Texas at El Paso’s Systems Ecology Lab used MPE to visualize LIDAR
datasets of the Antarctic Tundra. Dr. Tweedie’s research involves high resolution aerial point clouds, and
MPE was used at the University of El Paso’s Center for Cybershare’s Amythest tiled display to view the

LIDAR point clouds at large scale.

A Processing visualization of Antarctic ice sheets generated from LIDAR data

Dr. Yusheng Feng at the University of Texas at San Antonio participated in early usage of MPE at the SiVirt
Visualization Laboratory’s Nemo Tiled Display. Dr. Feng’s group used MPE to produce high-resolution
demonstrations and visualizations for visitors and researchers related to scientific visualization. MPE is one of
two primary display libraries currently in use at the SiVirt VizLab.

Software release and publicity

The software was released to the general public on December 11, 2013 via the open-source project hosting
website, GitHub. We had planned to release the software in September, but a hardware upgrade of TACC’s
tiled display, Stallion, took longer than anticipated and delayed our work significantly.

The Texas Advanced Computing Center published a press release and video to announce the software and
build interest, and promoted the release to its followers through social media, including Facebook and
Twitter. The announcements were virally shared, which led to new connections and collaborations from
interested researchers at other institutions, including Daniel Shiffman, developer of the original Most Pixels
Ever library, Casey Reas, one of the original creators of the Processing language, and Lev Manovich, who

began collaborating with us on our proposal to continue the project.

We also promoted the software to the Processing community through the highly trafficked user forums at
processing.org. The libraries page at processing.org will soon contain a link to the MPE software page.

Accomplishments

With the release of Massive Pixel Environment, we achieved our main goal of developing an open-source

software library that enables Processing to work with high-resolution tiled displays. By leveraging Processing,
MPE provides a rapid prototyping platform to develop large-scale, high-resolution interactive visualizations
for tiled displays. This software makes developing interactive visualizations for tiled displays far easier and

less time-consuming, and significantly lowers the barrier to entry for researchers in the humanities.

Interest from the open source community will be crucial for the future development of MPE. As of this
writing, the MPE source code has been “starred” 22 times and “forked” 5 times on GitHub. A star means
that someone in the GitHub programming community has added the project to their list of favorites. A fork
means that a member of the community has created a separate project using the MPE source code as a
starting point. This indicates a good level of initial interest, and we expect it to grow as we continue to
promote the MPE library. It is currently the most active software project in TACC’s GitHub repository.

GitHub does not allow us to track downloads of the library .zip file, so we have moved this file to
SourceForge, which will allow us to track downloads in the future.

Evaluation

Overall, the Thousand Words project was very successful. We met our main goal of developing a platform

to create interactive visualizations on high-resolution tiled displays that is much easier to use than anything that
existed previously. Feedback from eatly usage internally and with our collaborators has shown that the MPE
platform greatly simplifies and speeds the development of interactive visualizations for many-monitor

displays.

While the project met its goals, we faced a number of challenges along the way:

Early work on the project revealed our proposed design to be flawed (as described in the Project
Activities section of this report).

This is quite common in software development — it is often difficult to anticipate technical issues at the outset
of a project, without actually doing the work. For the same reason, time estimates can change dramatically.
We dealt with this by finding another technical solution to accomplish our goal. However, it is easy to
imagine a scenario in which we would have had to scrap the original idea and change course completely,

because the idea was no longer technically possible or no longer feasible within the proposed budget.

We were unable to find a way to fund a visualization collaboration with Professor Matt Cohen in
the UT Department of English.

We pursued an idea to create a visualization of the WorldCat database, but Dr. Cohen did not have funding
for a student to work on the project, and we did not have any extra funds to support the work. Our other
collaborators were already working on projects involving data visualization, which lowered the funding

threshold and provided mutual benefits for all involved.

The lack of basic computer programming expertise in the humanities made it difficult to involve
humanities students on the project.

It is interesting to note that both of our collaborators who produced humanities-related visualizations are
from non-humanities departments, and the students who did the programming were from the depattment

of computer sciences and (computational) linguistics. We believe that more institutional opportunities are

needed for students in the humanities to learn computer programming, and to work together with students

in computer science on collaborative digital humanities projects (which would provide mutual benefit).
We found it difficult to port a traditional menu-based application to Processing.

In our attempt to port ProseVis from the desktop to the tiled-display, we discovered that the desktop
graphical user interface was very difficult to implement in Processing. The Java Swing GUI framework is not
available in Processing, and the language is not intended to build these kinds of applications. While Processing
is great for creating interactive visualization sketches, it is not intended or well-suited to create traditional
desktop-style applications. Furthermore, user interfaces designed for a desktop screen often do not work

well on large, high resolution display.

® Best Practice: Use Processing for interactive visualization sketches, not for developing Windows or
Mac-like applications with lots of menus.
® Best Practice: Design interactive visualizations with a large, high resolution display in mind. Do not

assume a desktop application will translate well to a high-resolution display.
Bezels on tiled displays caused issues for reading text.

On tiled displays, there is dead space in between the bezels. Typically, the display is configured so that the
bezels obscure the part of the image that is “behind” the bezels (creating a windowpane effect). Any portion
of the text that is behind the bezels is obscured, making it less than ideal for text display. As monitor bezels

get smaller, this will hopefully become less of an issue.

® Best Practice: Consider whether bezels will cause a problem when designing visualizations for a
tiled-display.

Continuation of the Project

Due to the interest in MPE from arts, humanities, and sciences, as well as its usefulness to TACC’s own
visualization group, we intend to continue development of MPE. We also intend to continue publishing

results from the project, and plan provide training through TACC’s user services program’.

In addition, a number of new collaborative partnerships were formed as a result of the Thousand Words
project that will continue after the grant period. We continue to collaborate with all of our early MPE users
both formally and informally. For example, TACC is providing high performance computing and
visualization resources for the High Performance Sound Technologies for Access and Scholarship (HiIPSTAS)
Institute in May 2013, organized by Dr. Tanya Clement.* The Institute will include an instructional
presentation of ProseVis and MPE at the TACC/ACES Vislab. The softwate release also led to a promising

collaboration with cultural analytics researcher Lev Manovich, Professor at The Graduate Center, CUNY.

TACC is currently seeking funding to extend the Thousand Words project by executing along two parallel
thrusts of software development. First, we intend to add additional enhancements to MPE in response to
current and future user feedback. Currently planned enhancements will make MPE even easier for humanities

scholars to install and use on a scalable display system. Since these systems are often managed by people

3 http://www.tacc.utexas.edu/user-services /training
* http://blogs.ischool.utexas.edu /hipstas/2012/11/14 /welcome-to-hipstas/

http://www.google.com/url?q=http%3A%2F%2Fwww.tacc.utexas.edu%2Fuser-services%2Ftraining&sa=D&sntz=1&usg=AFQjCNGhFgLfwvAChsXmyb9naPXDnP7SIQ
http://www.google.com/url?q=http%3A%2F%2Fblogs.ischool.utexas.edu%2Fhipstas%2F2012%2F11%2F14%2Fwelcome-to-hipstas%2F&sa=D&sntz=1&usg=AFQjCNGxeRigf9pPamz7MZnMvFRUf-43BQ

outside a scholar’s home department, we would like to make the process to get up and running as simple as
possible. These enhancements will make moving back and forth from laptop to visualization wall a seamless
process. Other planned enhancements will add support for gestures, touch, and wearable displays, and meet
additional needs identified by our user base.

Second, we plan to develop a 1000 Words software library for Processing that allows programmers to
quickly build visualizations relevant to the humanities. This library will consist of pre-made algorithms and
visual elements for creating various types of information visualizations, along with examples and sample data
sets specific to the humanities to provide a launching point for other scholars. Working with our faculty
collaborators, we have identified a preliminary list of visualization types that we intend to suppott, including
networks, line graphs, scatterplots, image plots, trees, maps, timelines, and 3D point clouds. Examples will
include visualizations such as citation networks, document similarity networks, imageplots of paintings,
scatterplots of poems by linguistic features, graphs of Google N-gram data, 3D reconstructions of scanned
historical artifacts, and so on.

TV SR S

LINE GRAPH

SCATTER PLOT TREE MAP COLLAPSIBLE TREE

) PN

...ﬂ!g Lﬁ W@’

MAPS TIMELINE 3D RECONSTRUCTION

Examples of visualization types that the 1000 Words library will support

By creating MPE and the 1000 Words library, we hope to build a bridge between the visual art and design
community, the vibrant open source community of Processing artists and coders, the information

visualization community, and the community of scholars in the humanities.

Long Term Impact

10

MPE has become a central tool for TACC’s visualization group. MPE is also in use at several other university
visualization labs, and we expect it to reach more labs over the next year as we continue to promote and
improve it. Interest from the scientific visualization community, the media arts community, the open source
community, and other visualization labs will help ensure MPE’s continued development, and opens up a
range of potential funding opportunities. TACC’s visualization group has recently submitted a proposal to
NSF’s Human Centered Computing (HCC) program which, if awarded, will fund additional applications

and development of MPE.

An interactive visualization of high performance computing queues using MPE

We believe that MPE holds great promise for creating interactive visualizations for museums, libraries, and
other collections-based institutions. If we are able to secure funding to produce a 1000 Words visualization
library full of humanities-related examples, we will be able to demonstrate its potential and create even more
interest within the humanities.

Media artists, creative coders, and humanities researchers are just beginning to scratch the surface of what can
be created with MPE, but we believe that the Thousand Wotds project has put TACC well on its way to
building the world’s most advanced platform for humanities visualization. With continued funding and

development, we believe that the Thousand Words project can meet this lofty goal.

Grant Products

A web page for the project was created at http://www.tacc.utexas.edu/tacc-projects/a-thousand-words

during the early stages of the project and is continually updated with current information. TACC also
maintains a web page for the MPE software, located at

http:/ /www.tacc.utexas.edu/tacc-software/massive-pixel-environment.

We produced two videos about the project. The first, A Thousand Words: Advanced Visnalization for the
Humanities, was published to TACC’s YouTube page on December 12, 2012, and has received 1,019 views
to date:

http://www.youtube.com /watch?feature=plaver embedded&v=kvOu]2RwBTA

11

http://www.google.com/url?q=http%3A%2F%2Fwww.tacc.utexas.edu%2Ftacc-projects%2Fa-thousand-words&sa=D&sntz=1&usg=AFQjCNF-q2XIS6gYO9PgMybGkq3AqD63Lw
http://www.google.com/url?q=http%3A%2F%2Fwww.tacc.utexas.edu%2Ftacc-software%2Fmassive-pixel-environment&sa=D&sntz=1&usg=AFQjCNEoh_-magwv5ew3otWVQZvjZplNWQ
http://www.youtube.com/watch?feature=player_embedded&v=kvOuJ2RwBTA

The second video, Massive Pixel Environment: A Tool for Rapid Prototyping with Distributed Displays,
has not yet been promoted due to the pending name change:
http://www.youtube.com /watch?feature=player embedded&v=a0alT390Xal

The source code for the project is available through TACC’s GitHub account, at
https://github.com/TACC/MassivePixelEnvironment.

Documentation and tutorials on how to install and use the MPE Processing library are located on the project

GitHub page. This documentation is continually updated as we make changes to the library.
Listed below are the conference submissions about the project to date (all accepted):

® Westing, B., Nieto, H., Turknett, R., Gaither, K. MostPixelsEverCE: A Tool for Rapid
Development with Distributed Displays, CHI 2013 Extended Abstracts, April 27-May 2, 2013,
Paris, France.

e Westing, B., Turknett, R. Extending the Processing Programming Environment to Tiled Displays.
IEEE Visualization, 2012.

12

http://www.youtube.com/watch?feature=player_embedded&v=a0alT390XaI

Appendix 1: IEEE Visualization 2013 Conference Poster

Extending the Processing Programming
Environment to Tiled Displays

Brandt Westing (bwesting@tacc.utexas.edu)
Robert Turknett (turknett@tacc.utexas.edu)

The University of Texas At Austin
ACC Visualization Laboratory

Processing is an open source programming language and
envirenment for people whe want to create images, animations,
and interactions. Initially developed to serve as a saftware
sketchbook and to teach fundamentals of computer programming
within & visual context, Processing also has evolved into a tool for
generating finished professional wark. Today, there are tens af
thousands of students, artists, designars, researchers, and
hobbyists who use Processing for l2arning, prototyping, and
preduction. -Progessing.org

b g

[MostPixelsEver — Cluster Edition is an extension of the Pracessing programming
environment that enables visualization in cluster-driven display environments without
extensive knowledge of programming | graphics interfaces, or distri
computing. MostPixelsEver:CE is heavily inspired by Daniel Shiffman’s work in [4],
building upen it with & more efficient and configurable implementatian. The work
described here enables visual artists, humanities scholars and students, and even
traditional programmers to create izati in high distributed

i with sim plicity. M ver:CE hides the inherent complexity of
distributed environments by abstraction, and makes it possible ta rapidly create
wvisualizations en large displays.

Most tiled-display consist of several monitors or display madia, driven by a cluster of
computer that render the content needed. This solution does not facilitate graphics
workflows, however, as each computer in the cluster maintains its own context separate
af the others. MostPixelsEver:CE unifies the context between the separate machines in

{ the cluster and gives the entire composite surface a single point of view.

Before the scene is drawn, the main instance 1Y y calls the Process

object to adjust the view frustum such that the scene appears correct within the larger
display surface. This call ensures that the entire scene is not drawn to the local window,

but that only the correct portion of the scene is drawn with respect to the larger display

area.

Examples of MostPixelsEver: CE
rFunning on TACC's 328 megapixel
display Stallion, and the University of
Texas at El Paso's 90 megapixel
display Amethyst.

frame event

Processing
Sk eteh

MPE Library

8

Render Nede

done event

done event
Render Node
Head Node
—
done event

Render Nede

p
After the scene has been drawn, but before the scene i€ pushad Lo the graphics pipeline
for rasterization, a8 post-draw method is called on the Process and causes the Processing
instance to halt until the frame lock has been unlocked. The frame lock is controlled by
the Process instance and unlocks the frame lock when a frame event message is sent
frem the master messaging Process (or haad node). This sequence of evants effectively
synchronizes the display surface such that each process must be ready to render the
scene before the scene is rendered. While this has the negative side effect that the
slowest process controls the speed of rendering, it guarantees that the display is in sync.

-
Prooess process; // MPE Process thread
Configuration tileComfig; // MPE Configuration objeot

woid setupi) {
J/ oreate 3 mew cenfiguratiom chbject
tileConfig = new Configuration (“oomfiguration xml”, this

// set the size of the sketoch based on the configuratien £file
size(tileConfig getIMidth(), tileConfig.getLHeight(), OFENCL);

J/ oreate a mew process
Proocess = mew Prooess(tileConfig);

J/ staxrt the NEPE process

Process.start();

wvoid dxaw {
TotateY(-.5);
backgzound(0);
£i11¢255,4,0);
box (200);

}

Acknowledgments
This wark was made possible by funding from the National Endowment for the Humanities
{NEH) Grant: HD-51475-11, A Words: d Vi ization for the Humanities.

References

[1] K. Doerr, F. Kuester, "CGLX: A Scalable, High-performance Visualization Framewark for
Networked Display Envir " IEEE Tr on Vi lization and Computer
Graphies, vel. 99, 2010.

[2] S. Eilernann, M. Makhinya, R. Pajarcla, “Equalizer: A Scalable Parallel Rendering
Framework,” JEEE Transaclions on Visualization and Computer Graphics, vol. 15, no. 3,
2009.

[3] Processing, Caver, B. Fry, C. Reas, date last referenced: 06/25/2012, http:j/
processing.org/.

[4] Daniel Shiffman, Most Pixels Ever, D. Shiffman, date last referenced: 06/25/2012,

Bittp: {fwww.shiffman.net/2007/03/02/maost- pixels-ever/.

J

- J

13

Appendix 2: CHI 2013 Conference Paper

MostPixelsEverCE: A Tool for Rapid
Development with Distributed
Displays

Brandt Westing

TACC Visualization Lab
201 E 24th St

Austin, TX 78712 USA
bwesting@tacc.utexas.edu

Robert Turknett

TACC Visualization Lab
201 E 24th St

Austin, TX 78712 USA
turknett@tacc.utexas.edu

Heriberto Nieto
TACC Visualization Lab
201 E 24th St

Austin, TX 78712 USA
hnieto@tacc.utexas.edu

Kelly Gaither

TACC Visualization Lab
201 E 24th St

Austin, TX 78712 USA
kelly@tacc.utexas.edu

Copyright is held by the author/owner(s). CHI 2013 Extended

Abstracts, April 27, May 2, 2013, Paris, France. ACM

978-1-4503-1952-2/13/04.

Abstract

We describe a software library called MostPixelsEver:
Cluster Edition (MPE) for use in visualization, arts,
humanities, and interface prototyping in distributed
display environments. We discuss the implementation of
the software and its unique qualities when contrasted with
other distributed graphics libraries and environments in
the areas of interaction, rapid development, and rich
library support. We provide concrete examples of its usage
at multiple sites, lessons learned, and a discussion on the
future of tiled display environments.

Author Keywords
distributed graphics; tiled displays; visualization; interface
prototyping; arts; humanities

ACM Classification Keywords
1.3.2 [Graphics Systems]: Distributed/network graphics

General Terms
Design; Human Factors

Introduction

Software development with tiled displays can become
cumbersome when the number of compute resources
required to drive the display(s) is greater than one. It is
necessary for a cluster, or multiple compute resources, to

14

drive a display system when a single computer lacks the
necessary graphics or computation capabilities to drive the
display(s) alone. These systems are difficult to use
because of the lack of general purpose software developed
for distributed systems. Several libraries and algorithms
have been developed to ease the burden of graphical
application programming for such systems. However, we
have found these frameworks cumbersome, invasive, or
unsatisfactory for novice users. Past developments have
proved to be particularly difficult for non-computer
scientists to use because of the knowledge necessary to
navigate low-level programming interfaces.

MPE was developed to solve problems that are seen often
with distributed display systems: How can users be
enabled to quickly create visualizations, researchers to
easily test interface prototypes for interaction studies, and
non-computer scientists the functional literacy to utilize
distributed displays effectively?

Background

Distributed display systems come in many shapes and
sizes. Seamless displays can be created from multiple
projectors driven by multiple compute resources.
Majumder[10] describes the practical design of
multi-projector systems. Tiled Liquid Crystal Displays
(LCD) can be used to create high resolution and high
aggregate pixel count displays suitable for high resolution
visualization. Countless tiled LCD displays exist, the
largest of which include the RealityDeck[12], Stallion[11],
and the HIPERWall OptiPortal[3].

The development of software for these display systems has
been as varied as the systems themselves. Three common
architectures have been employed to simplify the usage of
distributed displays: pixel streaming, sort first

non-invasive, and sort first invasive rendering. Pixel
streaming architectures perform computation and
rendering at one or more compute resources and stream
the rendered pixels to rendering resources that then
display the pixel stream images. Pixel streaming
architectures require high computational ability at the
application node (which performs computation and
rasterization), and large available bandwidth for the pixel
streams - especially for dynamic content. The Scalable
Adaptive Graphics Environment (SAGE)[7] is an example
of a pixel streaming architecture. Chromiuml[6], in its
tile-sort mode, is a sort first non-invasive architecture for
distributed rendering. Chromium intercepts the OpenGL
stream from the application node(s) and streams the
commands to the render nodes, which render a section of
the final image shown on the display. Sort first invasive
architectures are those that require calls within the
application code (invasive) for distributed rendering to
function. These architectures have a complete graphics
pipeline at each render resource. Representative sort first
invasive architectures include cglX[4], DisplayCluster[8]*,
Equalizer[5], and MPE (described here). MPE, however,
is the only sort first invasive architecture based around a
higher-level programming language with ease-of-use and a
visualization focus as primary considerations.

Importantly, MPE is inspired in function and namesake by
an earlier work by Daniel Shiffman[13] intended for
distributed displays with Processing. Unlike Shiffman’s
previous work, the work presented here provides support
for the latest Processing versions, high numbers of
distributed hosts, optimized synchronization, and easier
configuration through the use of a single configuration file.

n the parallel streaming mode. Normal operation displays only
static content such as images and video.

15

The Processing Language

Processing is a programming environment that was
developed in 2001 to promote software literacy in the
visual arts[1]. It is a free and open-source programming
language and development environment that was
originally developed to teach fundamentals of computer
programming, but quickly developed into a tool for
creating professional work. Processing abstracts
complicated programming concepts and simplifies the
application work flow by: hiding compilation, linking, and
running the program executable; by implementing a
scripting layer on Java; and by providing a simplified
development environment. Furthermore, Processing
provides a programming construct broken into two
functional components that abstract the control loop
found in most applications.

frame event
1

——)
done event

Render Node

done event :

Render Node

—
done event

Render Node

Figure 1: The MPE rendering process uses a centralized
barrier synchronization method over TCP.

Implementation

MPE provides an abstraction to the distributed
environment and aims to make the jump from serial to
parallel programming as simple as possible for the
developer. As such, development with MPE differs from
developing with a serial Processing environment by only
two ways: the configuration description file and a small
number of MPE setup calls.

The Configuration File

The configuration file is a single XML file that describes
the distributed display system. The file specifies the host
machines involved in the distributed system, the displays
associated with the hosts, and the resolution and
orientation of the displays. The file serves to enable the
software to properly set the view frustum and configure
synchronization among the rendering clients.

The MPE Setup and Rendering Process

When running a distributed program using MPE and
Processing, the user makes an MPE function call within
the Sketch (main program) setup code that starts a
communication thread that runs in parallel to the main
thread. The communication thread handles
synchronization between the hosts in the distributed
system. Specifically, a centralized barrier synchronization
method is used over TCP sockets between a leader
process and the following or rendering processes.
Communication messages are simple 8-bit messages that
represent a frame event or done event. The frame events
are sent from the central process and allow the rendering
client(s) to unlock their frame lock (whereupon the scene
is rendered), while the done events (sent from the
followers) allow the central process to provide a barrier
until all rendering clients have rendered. When the leader
process receives all the done events, it broadcasts a frame

16

event. This leoping process can be seen in Figure 1.

Before the frame is rendered by a follower, the view
frustum is culled such that the rendered scene reflects only
the portion of the display area the display is responsible
for. For instance, a machine driving a quadrant of a
distributed display (1 screen out of 4), will render only the
part of the scene that will be viewable in the quadrant

Figure 2: Visualizations using MPE. Top Left: Interactive Visualization of HPC
Queues. Top Right. Antarctic lce Sheet Visualization. Bottom: Structural Visualization
of Shakespeare's The Tempest.

Results

We provide three usage examples of MPE in tiled display
settings. Furthermore, we contrast the usage of MPE
against other distributed display libraries and toolkits.

One: Interactive Visualization of HPC Queues

Using Paul Bourke's visualization of HPC queue statistics
as an inspiration[2], the Texas Advanced Computing
Center's Ranger Supercomputer queue is visualized in
real-time on the Stallion 328 mega-pixel display (shown in
Figure 2, top left). MPE is used to facilitate this
visualization on the Stallion system, which is composed of
21 distributed hosts. The visualization shows usage of
Ranger’s 4000 compute nodes, showing 100's of active
jobs and features control via multi-touch gestures from a
tablet. Multi-touch is enabled through the application of
the TUIO[9] protocol to Processing. The resolution of
Stallion allows the complete Ranger queue to be visualized
and spatially explored,

Two: Scientific Visualization of Antarctic Ice Sheets

Light detection and ranging (LIDAR) data from
Antarctica's coastline ice sheets is an important source of
information on climate change. The time varying data can
reflect changing temperatures on earth. The Systems
Ecology Laboratory at the University of Texas at El Paso,
along with researchers at TACC, used MPE to visualize
LIDAR datasets on the 45-node Amethyst tiled display
(Figure 2, top right) at the University of Texas at El Paso.
The interactive visualization served to allow researchers to
collaboratively and spatially explore the data collected and
envision the possibility of comparing large sets of LIDAR
data on Amethyst to better understand climate change on
earth.

Three: Structural Visualization of The Tempest
Processing is a powerful tool for information visualization
and has proven to be useful to researchers who need to
quickly visualize the organization of data and/or its
structure. This visualization illustrates the structure of
text, and is called the Text Universe. The Text Universe
shown here is an excerpt from Shakespeare's The
Tempest, revealing the structure of Shakespeare’s prose
using a node graph(Figure 2, bottom). Inspired by a
prototype visualization by Tiemen Rapati, this
visualization is intended to motivate humanities and arts
researchers or students to take advantage of distributed
displays as a new medium for exploration, exposition, and
insight. The visualization is shown running on TACC's
Stallion tiled display.

Discussion

MPE directly compares to the Cross Platform Cluster
Graphics Library (cglX): they are both libraries used to
develop applications for distributed displays with a sort
first invasive architecture. cglX is implemented in C++
and provides an API at the OpenGL level. cglX provides
the same type of synchronization as MPE, and operates
over TCP sockets: therefore their execution requirements
and messaging overhead are similar. clgX may be preferred
by a developer who works at a lower level, while MPE will
clearly be preferred by those with less experience, less
time, or desire the rich libraries that Processing has to
offer for visualization, input, and data processing. When
compared to pixel streaming architectures, MPE uses far
less bandwidth due to its small synchronization messages
(compared to pixel content). It is latency sensitive, as are
the pixel streaming architectures in SAGE and
DisplayCluster. Compared to the sort first non-invasive
architecture of Chromium, MPE requires less bandwidth
and has similar latency constraints. MPE programs must

be modified in the setup phase of a Sketch, unlike
Chromium which intercepts OpenGL calls from the
application and can run application unmodified.

The display architectures mentioned above all have
positive and negative attributes. While these libraries and
middle-ware have an important place in distributed display
systems, there is a current trend in the capability of
graphics hardware to drive a greater number of pixels.
The adoption of display standards such as DisplayPort
allow graphics pipelines to driver higher amounts of pixels
across a single output, and hardware vendors are
supporting an increasing number of ports per graphics
card. It is possible now to see display systems driven by a
single computer that drive a large number of displays. In
these systems, there is no need for distributed display
middle-ware and native applications may run unimpeded
(clearly a winning scenario for developers who do not wish
to modify code-bases). It remains to be seen how these
systems will evolve and whether distributed display
architectures (as mentioned here) will be needed in the
future to drive tiled displays. It is certain, however, that
distributed display software will be an important part of
the future of display environments: wearable displays and
ubiquitous display environments both require the notion of
distributed display architectures if they are to function as
a community of devices.

Conclusion

MostPixelsEver: CE (MPE) is a tool for rapid
development with distributed display systems. MPE
abstracts the parallelism of such an environment from the
user and allows for the creation of visualizations,
deployment of interface prototypes, and non-expert use of
systems that are inherently challenging to develop for.
The architecture of MPE is scalable: MPE has been

18

Appendix 3: Project Web Pages

TAG

Home

Powering Discoveries That Change The

About Resources User Services Rese Partnerships

work Unit

visualizatic

A Thousand Words: Advanced Visualization for the
Humanities

Purpose

Visualization uses computers to find patterns and make connections that normally cannot be seen.
This project will develop the software tools, skills, and knowledge base to allow humanities
researchers to use visualization - specifically on high-resolution displays powered by
supercomputers — to perform novel research

Overview

The tools that are currently available for
visualization on high-resolution displays
are primarily targeted at scientists, and
because of that, the tools can be
complicated and ill suited to the needs of
humanities scholars. To address this
issue, we have chosen a programming
language called Processing as a
platfarm on which to build visualizations
and visualization tools in collaboration
with humanities scholars.

Processing makes it easy to create
simple interactive "sketches” that
combine text, video, 3D graphics, animation, sound, and more. However, like most software,
Processing is not currently capable of running on ultra-high-resolution display clusters. The results
of this start up project will enable researchers anywhere to use Processing in conjunction with tiled
displays at universities, museums and research centers.

QOur long-term goal with this project is to create the world's most advanced platform for humanities
visualization. We aim to create software tools that will enable a new class of scholars from the
humanities to use high-resolution displays and advanced computing to create visualizations,
interactive maps, and multimedia works at a scale and resolution never before possible,

Massive Pixel Environment (MPE)

‘We've developed a free and open-source software library called Massive Pixel Environment that
makes it possible to render interactive Processing sketches across distributed computing systems on
many displays.

Mare information and download link here.

National Endowment for the Humanities (NEH)

TACC Staff

Rob Turknett
Digital Media, Arts & Humanities Coordinator

Brandt Westing
Visualization Laboratory Manager
Research Engineering/Scientist Associate ||

Partners

« Tanya Clement, UT Austin, School of Information
« Matt Cohen, UT Austin, Department of English
« Paul Resta, UT Austin, College of Education
Jason Baldridge, UT Austin, Department of Linguistics

THE UNIVERSITY OF

TEXAS ADVANCED COMPUTING CENTER TEx A S

AT AUSTIN

Education & Outreach News

Research & Development
User Research

SciVis Gallery

Publications

TACC Projects

TACC Software

Related Links

National Endowment for the
Humanities

Massive Pixel Environment (MPE)

Contact Us

Rob Turknett

Digital Media, Arts & Humanities
Coordinator
turknetti@tace.utexas.edu

Office of the Vice President for Research | Feedback | Index | Facebook | Twitter | Gontact

Search TACC
©2011 Texas Advanced Computing Center , The University of Texas at Austin

Custom Search

20

1E UNIVERSITY OF

TEXAS ADVANCED COMPUTING CENTER TEY(A ¢

ve 8 Vorid

Home About Resources UserServices Research & Development Partnerships

Massive Pixel Environment (MPE)

Purpose

Massive Pixel Environment is a library for extending Procassing sketches to multi-node tiled
displays. This library makes it possible to render interactive Processing sketches across distributed
computing systems on many displays. Itis intended for tiled display systems, but works in many
other types of environments. With simple modifications, a sketch can be rendered across a cluster at
the native resolution of the displays, and can greatly increase the amount of data that can be
visualized at one time. This library is intended to run on Linux and OSX-based clusters.

This library is developed from scratch atthe TACC/ACES Visualization Lab with inspiration from
Most Pixels Ever, developed by Daniel Shiffman.

This work was made possible by funding from the National Endowment for the Humanities (NEH)
Grant: HD-51475-11, A Thousand Words: Advanced Visualization for the Humanities.

Massive Pixel Environment features:

« Create interactive multimedia and data visualizations that span multiple displays, ata
resolution and scale never before possible

« Enables extremely high resolution Processing sketches — tested on the 328 Megapixel
Stallion display cluster at the TACC/ACES Visualization Lab

The Massive Pixel Environment library is available for download on GitHub. Massive Pixel
Environment is free software issued by the University of Texas at Austin under the BSD license.

<0

TACC Staff

Brandt Westing
Visualization Laboratory Manager
Research Engineering/Scientist Associate Il

Rob Turknett
Digital Media, Arts & Humanities Coordinator

AUSTIN

Education & Outreach News

Research & Development
User Research

SciVis Gallery

Publications

TACC Projects

TACC Software

Related Links

National Endowment for the
Humanities

A Thousand Words: Advanced
Visualization for the Humanities

Contact Us

Rob Turknett

Digital Media, Arts & Humanities
Coordinator
turknett@tacc.utexas.edu

Search TACC Office oflre\iiie President for Research | Feedback | -:Ex | Facebook \Tz‘r:er Contact
©2011 Texas Advanced Computing Center , The University of Texas at Austin

21

Appendix 4: Press Release

TA@@ TEXAS ADVANCED COMPUTING CENTER T A §
Home About Resources UserServices Rescarch & Development Partnerships

Most Pixels Ever: Cluster Edi

TACC Develops Visualization Software for Humanities Researchers

on Connect
EOSNE 0
&

A Thousand Words: Advanced Visualization for th.

Quick Links
Feature Stories
Multimedia

Events

Press Releases
Archive

2012 Press Releases
2011 Press Releases
2010 Press Releases
2009 Press Releases

Contact

Faith Singer-Villalobos
Public Relations
faih@tacc.utexas.edu

If you have troublo viowing this vidoo. ploase visit TACC's YouTuba page.

AUSTIN, Texas - The Texas Advanced Computing Center (TACC) at The University of Texas at Austin has released
Most Pixels Ever: Cluster Edition, an open source software tool that allows researchers, especially those in the
humanities, o create interactive, multimedia visualizations on high resolution, tiled displays like TACC's Stallion,
one of the highest resolution tiled displays in the world at 328 million pixels.

"The goal is to make visualization 100ls easier for humanities researchers to use,” said Rob Turknett. digital media.
arts and humanities coordinator at TACC. "The proliferation of digitized textual, visual and aural resources is a
great boon for the humanities, offering opportunities for new Kinds of scholarship, but it also brings a new
complexity.”

Supported by a startup grant from the National Endowment for the Humanities titled "A Thousand Words: Advanced
Visualization for the Humanities,” the software is based on a language called Processing, a programming toolkit
that makes it easier for people to create visualizations.

“As the amount of cultural ¢ata hat scholars work with increases, it becomes erucial 1o visualize hat data on a
sufficiantly nigh resolution display,” Turknet continued. “Conventional display resolutions simply aren‘t keeping
pace with this explosion of online cultural data 1o be explorad *

The work borrows ideas from a library called Most Pixels Ever by Daniel Shiffman at the Interactive
Telecommunications Program at NYU's Tisch School of the Ants. However, Shiffiman's version required
considerable configuration from users, according 1o Brandt Westing, technical lead on the project and manager of
the TACC/ACES Visualization Lab (Vislab). "Using Shiffiman‘s work as an inspiration, we re-wrote the software from
scraich to work on any type of composite display from 1ap1ops 10 he highest-end visualization clusters and tled
displays.”

Visualization clusters and tiled displays allow small groups of people to collaboratively explore large amounts of
data and many types of visualizations, including: high resolution imagery (satellite, aerial photography, scientific
instruments). high resolution movies (hi-res i i results), 2D wation display
(maps, charts, graphs, data. text); and 30 visualization (complex geometries, interactive exploration of 30
datasels)

“"Most of the tools that exist for these displays are developed by and for scientists, yet there are many researchers
from the humanities and arts who want to do visualization,” Turknett said. "The software that we've developed is
part of an effort o make advanced visualization systems more accessible to people who may not have a deep
technical background.”

Jason Baldridge, an associate professor in the Linguistics Department at The University of Texas at Austin
researches a wide range of problems involving the connection among language, computation, geography and
time. His research has the potential to improve a variety of applications based on natural language processing and
text analytics that are widely used to analyze unstructured data.

“We're awash in very large collections of text and we simply cannot read through all of them,” Baldridge said. “We
need improved tools for exploring text collections so people can find interesting patterns, and this new software
developed by TACC can help us accomplish this goal.”

Baldridge's current project involves analyzing a collection of several hundred texts from the Civil War. “Using the
new software on TACC's Stallion. we're the to do and view an

amount of data at once, both of which are incredibly useful in explofing the output from our models and
applications.” For example, Baldnage uses the sofiware 10 icentify lext passages from memairs that are connecied
10 & particular city ana time

"And, because they connect language to the real world, they lend themselves o novel visualizations that illustrate
the geographical and historical context of text collections and language use,” Baldridge said

Tanya Clement, an assistant professor at the School of Information, builds 1ools for scholars who analyze literary
texts. "Humanities researchers have not had access to large data sets until recent dacades. If's essential for
humanities scholars to be involved in the creation of new software and tools 3o the concams of the community are
reflected,” Clement said

Both Baldridge and Clement collaborated with TACC on the project

Most Pixels Ever: Cluster Edition is already in use at two other institutions: The University of Texas at El Paso and
The University of Texas at San Antonio's Center for Simulation Visualization and Real-ime Prediction.

Most Pixels Ever: Cluster Edition is open source and available for download. For mare information, visit Most Pixels
Ever: Cluster Edition and A Thousand Words: Advanced Visualization for the Humanities.

anE

Date Posted: 2012-12-11 Faith Singer-Villalobos

v todo [Ashare | v i S

| Facebook | Twiter | Contact

The University of Texas at Austi

Search TACC

itp:wwww.10C. Utexas.0du/news/Dress-0 e 908/201 2Macc dave ops visuaization-satiwara

Appendix 5: GitHub Page

TIRUREYY SuYI

glthub Explore GitHub Search Features Blog Sign in
TACC / MassivePixelEnvironment * S 2 5
Code Network Pull Requests 0 Issues B8 Wiki Graphs

Massive Pixel Environment (MPE) is a Processing library for easily extending sketches to distributed display environments

Read more
@ Clone in Mac o ZIP HTTP S8SH GitRead-Only https://github.com/TACC/MassivePixelEnvironment.git [Read-Only access
¥ branch master ~ Files Commits Branches 2 Tags

MassivePixelEnvironment / [O 47 commits

Update README.md

' bmwesting = € otest commit l6aebec?cf o
9 months ago Updated source with web content, license, and documentation. [bmwesting]

examples 4 months ago Added mperun' launcher script to launch MPE applications across clus... [bmwesting]
lib 7 menths ago Removing unnecessary files. [bmwesting]
rES0UCes 7 months ago Updated to version 0.2.0 for compatibility with processing 2.0 [bmwesting]
src a month ago Added debugging for latency of tiled displays. [brmwesting]
web 9 months ago Updated the website for the project to include proper download links ... [bmwesting]

E| README.md 8 days ago Update README.md [bmwesting]

= license.txt 7 months ago Updated to version 0.2.0 for compatibility with processing 2.0 [bmwesting]

E2 README.md

Massive Pixel Environment

Get the latest version hera!

Massive Pixel Environment (MPE) is a Processing library for easily extending sketches to distributed display environments. MPE was
developed at the Texas Advanced Computing Center and aims to make it easy to prototype visualizations for otherwise difficult to use
distribuled systems. MPE is compatible with the lastest Processing versions and supports full compatibility with advanced featuresets
of OpenGL.

In MPE:

« Each node in a cluster runs an instance of the Processing sketch application
+ The Processing sketch is easily launched across the cluster through the use of a single configuration file
« Support for all features of Processing is available

Getting Started:

« MPE Simple Guide

Other Links

« MPE: CE Project Page
« MPE: CE Paper/Abstract

Credits

»-1;-) NATIONAL ENDOWMENT FOR THE
%%'{’\% Humanities

This work was made possible by funding from the National Endowment for the Humanities (NEH) Grant:HD-51475-11, A Thousand
Words: Advanced Visualization for the Humanities.

Awards and News
DH g Winner: Best DH
o

visualizat

Awardsi . ins

GitHub Applications Services Documentation More

About us GitHub for Mac Gauges: Web analytics GltHub Help Training

Blog GitHub for Windows Speaker Deck: Presentations Developer API Students & teachers

Contact & support GitHub for Eclipse Gist: Code snippets GitHub Flavored Markdown The Shop

GitHub Enterprise GitHub mobile apps Job board GitHub Pages Plans & pricing

Site status The Octodex

Terms of Service Privacy Security © 2013 GitHub, Inc. All rights resarved

ntips Agithub.comTACC/MassivePxe Envimnment

Appendix 6: GitHub Tutorial (page 1)

‘Webpage Screenshot

.
glthUb Explore GitHub Search Features Blog

TACC / MassivePixelEnvironment

Code Network Pull Requests 0 Issues

Home Pages Wiki History Git Access

MassivePixelEnvironment HowTo

8 Wiki

* Star 23 P Fork 5

Graphs

Page History

Massive Pixel Environment (MPE) is inspired by the MostPixelsEver library that written for Processing a few years ago. Massive Pixel
Environment is written from scratch to better support simple configuration, ease-of-use, and speed in environments with many nodes and

displays when compared to MostPixelsEver.

Before you get started, you need to make sure you have MPE downloaded. You can get it from the project page here. You may also need to

download the PeasyCam library for this example, if you don't have it already.
Getting started with your first MPE program:

1. Creating a configuration file for your display.
2. Writing your first MPE program.
3. Running your first MPE program.

Read the FAQ for common problems/answers.

Last edited by bmwesting, 8 days ago

GitHub Applications Services
About us GitHub for Mac Gauges: Web analytics

Blog GitHub for Windows Speaker Deck: Presentations
Contact & support GitHub for Eclipse Gist: Code snippets

GitHub Enterprise GitHub mobile apps Job board

Site status

Terms of Service Privacy Security

nip: COMTACGH To

Documentation

GitHub Help

Developer APl

GitHub Flavored Markdown
GitHub Pages

More

Training

Students & teachers
The Shop

Plans & pricing

The Octodex

© 2013 GitHub, Inc. All rights reserved

25

